Publication Date

July 2022


Let $A$ be a nontrivial abelian group. A connected simple graph $G = (V, E)$ is $A$-\textbf{antimagic} if there exists an edge labeling $f: E(G) \to A \setminus \{0\}$ such that the induced vertex labeling $f^+: V(G) \to A$, defined by $f^+(v) = \Sigma$ $\{f(u,v): (u, v) \in E(G) \}$, is a one-to-one map. In this paper, we analyze the group-antimagic property for Cartesian products, hexagonal nets and theta graphs.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

ref_tag2022090208.pdf (168 kB)
Supplemental Reference List with DOIs