Home > Journals > TAG > Vol. 7 > Iss. 1 (2020)
Abstract
The burning number of a graph was recently introduced by Bonato et al. Although they mention that the burning number generalizes naturally to directed graphs, no further research on this has been done. Here, we introduce graph burning for directed graphs, and we study bounds for the corresponding burning number and the hardness of finding this number. We derive sharp bounds from simple algorithms and examples. The hardness question yields more surprising results: finding the burning number of a directed tree with one indegree-0 node is NP-hard, but FPT; however, it is W[2]-complete for DAGs. Finally, we give a fixed-parameter algorithm to find the burning number of a digraph, with a parameter inspired by research in phylogenetic networks.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Janssen, Remie
(2020)
"The Burning Number of Directed Graphs: Bounds and Computational Complexity,"
Theory and Applications of Graphs: Vol. 7:
Iss.
1, Article 8.
DOI: 10.20429/tag.2020.070108
Available at:
https://digitalcommons.georgiasouthern.edu/tag/vol7/iss1/8
Supplemental Reference List