•  
  •  
 

Abstract

Let A be a non-trivial abelian group. A simple graph G = (V, E) is A-antimagic if there exists an edge labeling f: E(G) \to A \setminus \{0\} such that the induced vertex labeling f^+: V(G) \to A, defined by f^+(v) = \sum_{uv\in E(G)}f(uv), is injective. The integer-antimagic spectrum of a graph G is the set IAM(G) = \{k\;|\; G \textnormal{ is } \mathbb{Z}_k\textnormal{-antimagic and } k \geq 2\}. In this paper, we determine the integer-antimagic spectra of disjoint unions of cycles.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

tag_2018_5_2_3(Integer-antimagic Spectra).pdf (122 kB)
Supplemental file with DOI

Share

COinS