Home > Journals > TAG > Vol. 3 > Iss. 1 (2015)
Publication Date
2016
Abstract
Finding spanning trees under various restrictions has been an interesting question to researchers. A "dense" tree, from a graph theoretical point of view, has small total distances between vertices and large number of substructures. In this note, the "density" of a spanning tree is conveniently measured by the weight of a tree (defined as the sum of products of adjacent vertex degrees). By utilizing established conditions and relations between trees with the minimum total distance or maximum number of sub-trees, an edge-swap heuristic for generating "dense" spanning trees is presented. Computational results are presented for randomly generated graphs and specific examples from applications.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Ozen, Mustafa; Wang, Hua; Wang, Kai; and Yalman, Demet
(2016)
"An Edge-Swap Heuristic for Finding Dense Spanning Trees,"
Theory and Applications of Graphs: Vol. 3:
Iss.
1, Article 1.
DOI: 10.20429/tag.2016.030101
Available at:
https://digitalcommons.georgiasouthern.edu/tag/vol3/iss1/1
Supplemental Reference List with DOIs