•  
  •  
 

Publication Date

February 2023

Abstract

An outer independent double Italian dominating function on a graph G is a function f:V(G) →{0,1,2,3} for which each vertex x ∈ V(G) with {f(x)∈ {0,1} then Σy ∈ N[x]f(y) ⩾ 3 and vertices assigned 0 under f are independent. The outer independent double Italian domination number γoidI(G) is the minimum weight of an outer independent double Italian dominating function of graph G. In this work, we present some contributions to the study of outer independent double Italian domination of three graph products. We characterize the Cartesian product, lexicographic product and direct product of custom graphs in terms of this parameter. We also provide the best possible upper and lower bounds for these three products for arbitrary graphs.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

ref_tag2023100105.pdf (331 kB)
Supplemental DOI list

Share

COinS