Microscale 3D Printing of Nanotwinned Copper
Document Type
Article
Publication Date
12-7-2017
Publication Title
Advanced Materials
DOI
10.1002/adma.201705107
Abstract
Nanotwinned (nt)‐metals exhibit superior mechanical and electrical properties compared to their coarse‐grained and nanograined counterparts. nt‐metals in film and bulk forms are obtained using physical and chemical processes including pulsed electrodeposition (PED), plastic deformation, recrystallization, phase transformation, and sputter deposition. However, currently, there is no process for 3D printing (additive manufacturing) of nt‐metals. Microscale 3D printing of nt‐Cu is demonstrated with high density of coherent twin boundaries using a new room temperature process based on localized PED (L‐PED). The 3D printed nt‐Cu is fully dense, with low to none impurities, and low microstructural defects, and without obvious interface between printed layers, which overall result in good mechanical and electrical properties, without any postprocessing steps. The L‐PED process enables direct 3D printing of layer‐by‐layer and complex 3D microscale nt‐Cu structures, which may find applications for fabrication of metamaterials, sensors, plasmonics, and micro/nanoelectromechanical systems.
Recommended Citation
Behroozfar, Ali, Soheil Daryadel, S. Reza Morsali, Salvador Moreno, Mahmoud Baniasadi, Rodrigo A. Bernal, Majid Minary-Jolandan.
2017.
"Microscale 3D Printing of Nanotwinned Copper."
Advanced Materials, 30 (4): Wiley Online Library.
doi: 10.1002/adma.201705107 source: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201705107
https://digitalcommons.georgiasouthern.edu/manufact-eng-facpubs/63