Finite Element Simulation and Experimental Verification of Ultrasonic Non-Destructive Inspection of Defects in Additively Manufactured Materials
Document Type
Conference Proceeding
Publication Date
4-20-2018
Publication Title
AIP Conference Proceeding
DOI
10.1063/1.5031508
ISBN
978-0-7354-1644-4
ISSN
1551-7616
Abstract
Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.
Recommended Citation
Taheri, Hossein, Lucas W. Koester, Timothy A. Bigelow, Leonard J. Bond.
2018.
"Finite Element Simulation and Experimental Verification of Ultrasonic Non-Destructive Inspection of Defects in Additively Manufactured Materials."
AIP Conference Proceeding, Dale E. Chimenti and Leonard J. Bond (Ed.), 1949 Provo, UT: AIP Publishing.
doi: 10.1063/1.5031508 source: https://aip.scitation.org/doi/10.1063/1.5031508 isbn: 978-0-7354-1644-4
https://digitalcommons.georgiasouthern.edu/manufact-eng-facpubs/22