Document Type
Article
Publication Date
9-15-2020
Publication Title
International Journal of Hydrogen Energy
DOI
10.1016/j.ijhydene.2020.08.179
ISSN
0360-3199
Abstract
The method of Computational Fluid Dynamics is used to predict the process parameters and select the optimum operating regime of a methanol reformer for on-board production of hydrogen as fuel for a 3 kW High-Temperature Proton Exchange Membrane Fuel Cell power system. The analysis uses a three reactions kinetics model for methanol steam reforming, water gas shift and methanol decomposition reactions on Cu/ZnO/Al2O3 catalyst. Numerical simulations are performed at single channel level for a range of reformer operating temperatures and values of the molar flow rate of methanol per weight of catalyst at the reformer inlet. Two operating regimes of the fuel processor are selected which offer high methanol conversion rate and high hydrogen production while simultaneously result in a small reformer size and a reformate gas composition that can be tolerated by phosphoric acid-doped high temperature membrane electrode assemblies for proton exchange membrane fuel cells. Based on the results of the numerical simulations, the reactor is sized, and its design is optimized.
Recommended Citation
Gurau, Vladimir, Adedayo Ogunleke, F. Strickland.
2020.
"Design of a Methanol Reformer for on-board Production of Hydrogen as Fuel for a 3kW High-temperature Proton Exchange Membrane Fuel Cell Power System."
International Journal of Hydrogen Energy, 45 (56): 31745-31759: Elsevier.
doi: 10.1016/j.ijhydene.2020.08.179 source: https://www.sciencedirect.com/science/article/pii/S0360319920332067?via%3Dihub#!
https://digitalcommons.georgiasouthern.edu/manufact-eng-facpubs/104
Copyright
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Comments
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).