Asymptotically correct shell theories with fluid loading for the thin spherical shell: new results
Document Type
Article
Publication Date
6-4-1998
Publication Title
The Journal of the Acoustical Society of America
DOI
10.1121/1.409771
ISSN
0001-4966
Abstract
In a previous paper [C. E. Dean and M. F. Werby, J. Acoust. Soc. Am. 91, 2440 (A) (1992)] further results in the derivation of a so‐called ‘‘shell theory’’ incorporating proper high ka asymptotic behavior for the Lamb flexural and extensional modes for a thin spherical shell were given. Shell theories give reasonably good results for the motion of a bounded elastic shell by positing that various parts of the shell move together in some reasonable manner. They also give physical insight into the motions of the shell while using less computational time and resources than exact elastodynamic calculations. The use of various assumptions about the motions and fluid loading of the thin spherical shell gives rise to several shell theories. New results from the derivation of an asymptotically correct shell theory with fluid loading for the thin spherical shell are compared with the exact results from modal analysis with particular emphasis on the large size parameter (large ka) limit for the flexural and extensional Lamb modes. Limitations of each of the methods are then outlined as well as those of shell methods in general. [Initial work in this area supported by ONR/NRL and by ONT Postdoctoral Fellowship Program.]
Recommended Citation
Dean, Cleon, Michael F. Werby.
1998.
"Asymptotically correct shell theories with fluid loading for the thin spherical shell: new results."
The Journal of the Acoustical Society of America, 95 (5): 2805: Acoustical Society of America.
doi: 10.1121/1.409771
https://digitalcommons.georgiasouthern.edu/physics-facpubs/166
Comments
Copyright 1994 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.