High-Dimensional Stochastic Design Optimization by Adaptive-Sparse Polynomial Dimensional Decomposition

Document Type

Contribution to Book

Publication Date

3-17-2016

Publication Title

Sparse Grids and Applications - Stuttgart 2014

DOI

10.1007/978-3-319-28262-6_10

ISBN

978-3-319-28262-6

ISSN

2197-7100

Abstract

This paper presents a novel adaptive-sparse polynomial dimensional decomposition (PDD) method for stochastic design optimization of complex systems. The method entails an adaptive-sparse PDD approximation of a high-dimensional stochastic response for statistical moment and reliability analyses; a novel integration of the adaptive-sparse PDD approximation and score functions for estimating the first-order design sensitivities of the statistical moments and failure probability; and standard gradient-based optimization algorithms. New analytical formulae are presented for the design sensitivities that are simultaneously determined along with the moments or the failure probability. Numerical results stemming from mathematical functions indicate that the new method provides more computationally efficient design solutions than the existing methods. Finally, stochastic shape optimization of a jet engine bracket with 79 variables was performed, demonstrating the power of the new method to tackle practical engineering problems.

Share

COinS