Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with art treatment and distributed delays
Document Type
Article
Publication Date
1-2021
Publication Title
Discrete and Continuous Dynamical Systems Series S
DOI
10.3934/dcdss.2021005
ISSN
1937-1179
Abstract
A multipopulation HIV/AIDS deterministic epidemic model is studied. The population structure is a multihuman behavioral structure composed of humans practicing varieties of distinct HIV/AIDS preventive measures learnt from information and education campaigns (IEC) in the community. Antiretroviral therapy (ART) treatment is considered, and the delay from HIV exposure until the onset of ART is considered. The effects of national and multilateral support providing official developmental assistance (ODAs) to combat HIV are represented. A separate dynamics for the IEC information density in the community is derived. The epidemic model is a system of differential equations with random delays. The basic reproduction number (BRN) for the dynamics is obtained, and stability analysis of the system is conducted, whereby other disease control conditions are obtained in a multi- and a finite dimensional phase space. Numerical simulation results are given.
Recommended Citation
Wanduku, Divine.
2021.
"Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with art treatment and distributed delays."
Discrete and Continuous Dynamical Systems Series S: American Institute of Mathematical Science.
doi: 10.3934/dcdss.2021005
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/763
Comments
Copyright Policy