The Extremal Values of the Wiener Index of a Tree with Given Degree Sequence
Document Type
Article
Publication Date
7-28-2008
Publication Title
Discrete Applied Mathematics
DOI
10.1016/j.dam.2007.11.005
ISSN
0166-218X
Abstract
The Wiener index of a graph is the sum of the distances between all pairs of vertices, it has been one of the main descriptors that correlate a chemical compound’s molecular graph with experimentally gathered data regarding the compound’s characteristics. In [M. Fischermann, A. Hoffmann, D. Rautenbach, L.A. Székely, L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (1–3) (2002) 127–137], the tree that minimizes the Wiener index among trees of given maximal degree is studied. We characterize trees that achieve the maximum and minimum Wiener index, given the number of vertices and the degree sequence.
Recommended Citation
Wang, Hua.
2008.
"The Extremal Values of the Wiener Index of a Tree with Given Degree Sequence."
Discrete Applied Mathematics, 156 (14): 2647-2654.
doi: 10.1016/j.dam.2007.11.005
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/715