Document Type
Article
Publication Date
12-9-2013
Publication Title
Computational and Mathematical Methods in Medicine
DOI
10.1155/2013/358980
ISSN
1748-6718
Abstract
In the field of cancer biology, numerous genes or proteins form extremely complex regulatory network, which determines cancer cell fate and cancer cell survival. p53 is a major tumor suppressor that is lost in more than 50% of human cancers. It has been well known that a variety of proteins regulate its protein stability, which is essential for its tumor suppressive function. It remains elusive how we could understand and target p53 stabilization process through network analysis. In this paper we discuss the use of random walk and stationary distribution to measure the compound effect of a network of genes or proteins. This method is applied to the network of nine proteins that influence the protein stability of p53 via regulating the interaction between p53 and its regulator MDM2. Our study identifies that some proteins such as HDAC1 in the network of p53 regulators may have more profound effects on p53 stability, agreeing with the established findings on HDAC1. This work shows the importance of using mathematical analysis to dissect the complexity of biology networks in cancer.
Recommended Citation
Wang, Hua, Guang Peng.
2013.
"Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression."
Computational and Mathematical Methods in Medicine, 2013: 1-6.
doi: 10.1155/2013/358980
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/705
Comments
Copyright © 2013 Hua Wang and Guang Peng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article was retrieved from Computational and Mathematical Methods in Medicine.