Gorenstein Injective Projective and Flat (Pre)Covers
Document Type
Article
Publication Date
9-9-2014
Publication Title
Acta Mathematica Universitatis Comenianae
ISSN
0862-9544
Abstract
We prove that if the ring R is left noetherian and if the class GI of Gorenstein injective modules is closed under filtrations, then GI is precovering. We extend this result to the category of complexes. We also prove that when R is commutative noetherian and such that the character modules of Gorenstein injective modules are Gorenstein flat, the class of Gorenstein injective complexes is both covering and enveloping. This is the case when the ring is commutative noetherian with a dualizing complex. The second part of the paper deals with Gorenstein projective and flat complexes. We prove the existence of special Gorenstein projective precovers over commutative noetherian rings of finite Krull dimension.
Recommended Citation
Enochs, Edgar E., Sergio Estrada, Alina Iacob.
2014.
"Gorenstein Injective Projective and Flat (Pre)Covers."
Acta Mathematica Universitatis Comenianae, 83 (2): 217-230.
source: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/90/72
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/60