The Cardinality of Sets of k-Independent Vectors over Finite Fields
Document Type
Article
Publication Date
4-2007
Publication Title
Monatshefte fur Mathematik
DOI
10.1007/s00605-006-0440-6
ISSN
1436-5081
Abstract
A set of vectors is k-independent if all its subsets with no more than k elements are linearly independent. We obtain a result concerning the maximal possible cardinality Indq(n, k) of a k-independent set of vectors in the n-dimensional vector space F qnover the finite field F qof order q. Namely, we give a necessary and sufficient condition for Indq(n, k) = n + 1. We conclude with some pertinent remarks re applications of our results to codes, graphs and hypercubes.
Recommended Citation
Damelin, S. B., Grzegorz J. Michalski, Gary L. Mullen.
2007.
"The Cardinality of Sets of k-Independent Vectors over Finite Fields."
Monatshefte fur Mathematik, 150 (4): 289-295.
doi: 10.1007/s00605-006-0440-6
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/6