Topology of Connected Self-Similar Tiles in the Plane With Disconnected Interiors
Document Type
Article
Publication Date
5-14-2005
Publication Title
Topology and its Applications
DOI
10.1016/j.topol.2004.11.009
ISSN
0166-8641
Abstract
We study the topological structure of connected self-similar tiles in R2 defined by injective contractions satisfying the open set condition. We emphasize on tiles each of whose interior consists of either finitely or infinitely many components. In the former case, we show in particular that the closure of some component is a topological disk. In the latter case we show that the closure of each component is a locally connected continuum. We introduce the finite tail and infinite replication properties and show that under these assumptions the closure of each component is a disk. As an application we prove that the closure of each component of the interior of the Lévy dragon is a disk.
Recommended Citation
Ngai, Sze-Man, Tai-Man Tang.
2005.
"Topology of Connected Self-Similar Tiles in the Plane With Disconnected Interiors."
Topology and its Applications, 150 (1-3): 139-155.
doi: 10.1016/j.topol.2004.11.009
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/599