Document Type

Article

Publication Date

8-27-2016

Publication Title

Journal of Mathematical Sciences: Advances and Applications

DOI

10.18642/jmsaa_7100121709

ISSN

0974-5750

Abstract

The infinite upper triangular Pascal matrix is T = [( j )i] for 0 ≤ i, j. It is easy to see that any leading principle square submatrix is triangular with determinant 1, hence invertible. In this paper, we investigate the invertibility of arbitrary square submatrices Tr, c comprised of rows r = [r0, … , rm ] and columns c = c0 , … , cm[] of T. We show that Tr, c is invertible r ≤ c i.e., ri ≤ ci for i = 0, …, m(), or equivalently, iff all diagonal entries are nonzero. To prove this result, we establish a connection between the invertibility of these submatrices and polynomial interpolation. In particular, we apply the theory of Birkhoff interpolation and Pölya systems.

Comments

This version of the paper was obtained from arXIV.org. In order for the work to be deposited in arXIV.org, the author must have permission to distribute the work or the work must be available under the Creative Commons Attribution license, Creative Commons Attribution-Noncommercial-ShareAlike license, or Create Commons Public Domain Declaration. The publisher's final edited version of this article is available at Journal of Mathematical Sciences: Advances and Applications.

Share

COinS