Fejér Polynomials and Chaos
Document Type
Conference Proceeding
Publication Date
10-15-2014
Publication Title
Special Functions, Partial Differential Equations, and Harmonic Analysis: In Honor of Calixto P. Calderón
DOI
10.1007/978-3-319-10545-1_7
ISBN
978-3-319-10544-4
Abstract
We show that given any μ > 1, an equilibrium x of a dynamic system
xn+1=f(xn) (1)
can be robustly stabilized by a nonlinear control
u=−∑j=1N−1εj(f(xn−j+1)−f(xn−j)), |εj| < 1, j=1,…,N−1, (2)
for f ′ (x) ∈ (−μ, 1). The magnitude of the minimal value N is of order √μ. The optimal explicit strength coefficients are found using extremal nonnegative Fejér polynomials. The case of a cycle as well as numeric examples and applications to mathematical biology are considered.
Recommended Citation
Dmitrishin, Dmitriy, Anna Khamitova, Alexander M. Stokolos.
2014.
"Fejér Polynomials and Chaos."
Special Functions, Partial Differential Equations, and Harmonic Analysis: In Honor of Calixto P. Calderón, Constantine Georgakis, Alexander M. Stokolos & Wilfredo Urbina (Ed.), 108: 49-75 Cham, Switzerland: Springer International Publishing.
doi: 10.1007/978-3-319-10545-1_7 isbn: 978-3-319-10544-4
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/316