Transference of Weak Type Bounds of Multiparameter Ergodic and Geometric Maximal Operators
Document Type
Article
Publication Date
2012
Publication Title
Fundamenta Mathematicae
DOI
10.4064/fm218-3-4
ISSN
1730-6329
Abstract
Let U1,…,Ud be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of Zd+ and B the associated collection of rectangular parallelepipeds in Rd with sides parallel to the axes and dimensions of the form n1×⋯×nd with (n1,…,nd)∈Γ. The associated multiparameter geometric and ergodic maximal operators MB and MΓ are defined respectively on L1(Rd) and L1(Ω) by
MBg(x)=supx∈R∈B1/|R| ∫R |g(y)|dy
and
MΓf(ω)=sup(n1,…,nd)∈Γ1/n1⋯nd ∑j1=0n1−1 ⋯ ∑jd=0nd−1 |f (Uj11 ⋯ Ujddω)|.
Given a Young function Φ, it is shown that MB satisfies the weak type estimate
|{x∈Rd:MBg(x) > α}| ≤ CB∫Rd Φ (cB|g|/α)
for a pair of positive constants CB, cB if and only if MΓ satisfies a corresponding weak type estimate
μ {ω∈Ω:MΓf(ω) > α} ≤ CΓ∫ΩΦ(cΓ|f|/α).
for a pair of positive constants CΓ, cΓ. Applications of this transference principle regarding the a.e. convergence of multiparameter ergodic averages associated to rare bases are given.
Recommended Citation
Hagelstein, Paul, Alexander M. Stokolos.
2012.
"Transference of Weak Type Bounds of Multiparameter Ergodic and Geometric Maximal Operators."
Fundamenta Mathematicae, 218: 269-283.
doi: 10.4064/fm218-3-4
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/185