Claw-Free Graphs and Separating Independent Sets On 2-Factors
Document Type
Article
Publication Date
3-2012
Publication Title
Journal of Graph Theory
DOI
10.1002/jgt.20579
ISSN
1097-0118
Abstract
In this article, we prove that a line graph with minimum degree δ≥7 has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with δ≥7, then for any independent set S there is a 2-factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that δ≥5 is sufficient to imply the existence of such a 2-factor in the larger class of claw-free graphs.
It is also shown that if G is a claw-free graph of order n and independence number α with δ≥2n/α−2 and n≥3α3/2, then for any maximum independent set S, G has a 2-factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that δ≥n/α≥5 is sufficient to imply the existence of a 2-factor with α cycles, each containing one vertex of a maximum independent set.
Recommended Citation
Faudree, Ralph J., Colton Magnant, Kenta Ozeki, Kiyoshi Yoshimoto.
2012.
"Claw-Free Graphs and Separating Independent Sets On 2-Factors."
Journal of Graph Theory, 69 (3): 251-263.
doi: 10.1002/jgt.20579
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/109