Effects of Normalization Techniques on Logistic Regression in Data Science
Document Type
Conference Proceeding
Publication Date
2018
Publication Title
2018 Proceedings of the Conference on Information Systems Applied Research
ISSN
2167-1508
Abstract
The improvements in the data science profession have allowed the introduction of several mathematical ideas to social patterns of data. This research seeks to investigate how different normalization techniques can affect the performance of logistic regression. The original dataset was modeled using the SQL Server Analysis Services (SSAS) Logistic Regression model. This became the baseline model for the research. The normalization methods used to transform the original dataset were described. Next, different logistic models were built based on the three normalization techniques discussed. This work found that, in terms of accuracy, decimal scaling marginally outperformed minmax and z-score scaling. But when Lift was used to evaluate the performances of the models built, decimal scaling and z-score slightly performed better than min-max method. Future work is recommended to test the regression model on other datasets specifically those whose dependent variable are a 2-category problem or those with varying magnitude independent attributes.
Recommended Citation
Adeyemo, Nureni Adekunle, Hayden Wimmer, Loreen Marie Powell.
2018.
"Effects of Normalization Techniques on Logistic Regression in Data Science."
2018 Proceedings of the Conference on Information Systems Applied Research, 11: 1-9: ISCAP, Information Systems and Computing Academic Professionals.
source: http://proc.conisar.org/2018/pdf/4813.pdf
https://digitalcommons.georgiasouthern.edu/information-tech-facpubs/111
Copyright
©2018 ISCAP (Information Systems & Computing Academic Professionals)