Term of Award
Spring 2008
Degree Name
Master of Science in Mathematics (M.S.)
Document Type and Release Option
Thesis (open access)
Copyright Statement / License for Reuse
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Department of Mathematical Sciences
Committee Chair
Charles Champ
Committee Member 1
B. Oluyede
Committee Member 2
P. Humphrey
Abstract
When modeling the stochastic behavior of a sequence { } t X of the quality measurement X on the output of a production process, it is usually assumed the measurements taken over time are independent and identically distributed. Multiple authors have pointed out that significant autocorrelation can affect the performance of traditional control charting procedures. One family of models for time series data are the autoregressive integrated moving average (ARIMA) models. These models are well suited to model production processes, in which the observations are autocorrelated. It is our interest to examine these models. Meaning is given to the process being in-control and out-of-control in terms of the parameters of the model. The performance of the Shewhart X chart and CUSUM X chart are compared. This includes determining the number of unobserved values between samples for the charts to perform as they would be expected if the samples were independent. Some recommendations are given.
Recommended Citation
King, Jesse Dorian, "Monitoring the Process Mean of Autocorrelated Data" (2008). Electronic Theses and Dissertations. 648.
https://digitalcommons.georgiasouthern.edu/etd/648
Research Data and Supplementary Material
No