Term of Award

Fall 2025

Degree Name

Master of Science in Biology (M.S.)

Document Type and Release Option

Thesis (open access)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Department

Department of Biology

Committee Chair

Daniel Gleason

Committee Member 1

Tyler Cyronak

Committee Member 2

John Carroll

Abstract

On both tropical and temperate reefs, the calcium carbonate skeletons produced by scleractinian corals provide habitat that supports a high biodiversity of fishes and invertebrates. Ocean acidification (OA), driven by excess anthropogenic CO2 uptake, causes declines in seawater pH and carbonate ion concentration and can compromise coral calcification by causing increased energetic demands. Deciphering how corals meet this increased energetic demand is critical to predicting their future persistence. Oculina arbuscula is a facultatively symbiotic temperate coral common on subtropical reefs of the South Atlantic Bight. This coral has demonstrated calcification resilience to reduced pH conditions in both symbiotic and aposymbiotic forms, despite aposymbiotic colonies lacking access to photosynthetically-derived energy. I hypothesized that energy acquired through heterotrophy is a mechanism by which O. arbuscula obtains the resources necessary to overcome the heightened energy demand created by ocean acidification. To investigate the role of heterotrophy, a 90-day laboratory experiment was conducted exposing aposymbiotic O. arbuscula fragments to a pH of either 7.7 or 8.0 under three different feeding levels of Artemia spp. nauplii. Although fragments with greater food consumption showed significantly higher calcification rates, this effect was independent of pH. Similarly, biochemical analyses indicated that total protein and total carbohydrate stores increased with higher food consumption but were unaffected by pH exposure. In contrast, total lipid stores decreased during the experiment, regardless of pH exposure or food level, suggesting the heterotrophic contribution to lipid stores was deficient. Together, these results indicate that while heterotrophically-derived energy may not be a primary mechanism underlying the ability of O. arbuscula to sustain calcification rates under OA stress, this coral species should continue to thrive in an increasingly acidifying ocean as long as heterotrophic food resources are in abundance.

OCLC Number

1560060805

Research Data and Supplementary Material

No

Share

COinS