Term of Award
Spring 2022
Degree Name
Master of Science, Mechanical Engineering
Document Type and Release Option
Thesis (restricted to Georgia Southern)
Copyright Statement / License for Reuse
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Department of Mechanical Engineering
Committee Chair
Shaowen Xu
Committee Member 1
Aniruddha Mitra
Committee Member 2
Haijun Gong
Abstract
In this research, high strength 3D-nano Bacterial Cellulose (BC) framework was utilized to modify Young’s modulus and optical properties such as Ultraviolet (UV) protection and transparency of Polymethyl Methacrylate (PMMA/acrylic). The fabrication of this BC reinforced composite included the following steps: a) the bacterial cellulose membranes were cultivated with a Hestrin and Shramm medium with acetic acid bacteria (Acetobacter Xylinus), b) the bacteria and other organic substances in the bacterial cellulous membrane were cleaned to form a 3D framework of high strength nano-bacterial-cellulous fiber, c) the 3D framework was imbedded in Methyl Methacrylate through several steps of chemical exchange and, d) the BC reinforced composite and pure PMMA were synthesized by the polymerization of the MMA. The mechanical properties of BC reinforced composite and PMMA were determined with tensile tests. The optical property was determined by the UV-visibility spectrometer. This study found that the average Young’s Modulus of pure PMMA substrates was 1.111 GPa, and the average Young’s Modulus of the BC composite had a maximum value of 1.91 GPa. The ultimate tensile strength of the BC composite had a wide variation due to imperfections. This variation was from 20.1 MPa to 37.8 MPa. For the UV-ray block the BC composites extended the ability of high absorbance in UV-C&B range in maximum; the BC composites also had an extraordinary improvement comparing with PMMA substrate in UV-A wavelength range. In visible light wavelength, the new BC composite showed a completely different optical performance by filtering the light color which the transparency had a difference of 40% transmittance from purple light to red light wavelength (400 nm to 700 nm). Based on the data collected, this new BC composite could be used for future applications to enhance human’s sensitivity to color and also could be used as a polarizing filter for color weakness.
Recommended Citation
Zhang, Guangheng, "Synthesis and Behavior of Mechanical and Optical Properties in Nano-Bacterial Cellulose Network Reinforced in PMMA Substrate" (2022). Electronic Theses and Dissertations. 2444.
https://digitalcommons.georgiasouthern.edu/etd/2444
Research Data and Supplementary Material
No