Term of Award

Fall 2020

Degree Name

Master of Science in Mathematics (M.S.)

Document Type and Release Option

Thesis (restricted to Georgia Southern)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Department

Department of Mathematical Sciences

Committee Chair

Ionut Emil Iacob

Committee Member 1

Stephen Carden

Committee Member 2

Felix Hamza Lup

Abstract

We perform an analysis of the brain electroencephalogram (EEG) signals to determine what part of the brain is responsible with consumers’ preference on selecting marketing products. In our study we use real brain signals collected from different regions of the brain through 14 channels. We de-noise and pre-process these signals, extract the characteristic brain waves (delta, theta, alpha, beta, and gamma) from each brain region signal (using Discrete Fourier Transform filters), and perform comprehensive comparison and analysis for different signal types, individuals, and brain regions (brain sensors locations). We then use an Artificial Neural Network model to learn and predict consumers’ choice based on their detected brain activity. Our extensive experimental results show that these largely available, non-invasive technologies can be successfully employed in neuromarketing, a new emerg- ing field of using neuroscience to determine consumers’ genuine preferences and reactions on different marketing stimuli.

OCLC Number

1382331533

Research Data and Supplementary Material

Yes

Share

COinS