Term of Award
Fall 2017
Degree Name
Master of Science in Applied Engineering (M.S.A.E.)
Document Type and Release Option
Thesis (open access)
Copyright Statement / License for Reuse
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Department of Mechanical Engineering
Committee Chair
David Calamas
Committee Member 1
Biswanath Samanta
Committee Member 2
Marcel Ilie
Abstract
When designing extended surfaces for the thermal management of electronic devices in aerospace applications it is critically important to minimize mass. However, this can be difficult to achieve as the rate of heat dissipated is directly proportional to the surface area. Fortunately, when certain fractal geometries, like the Sierpinski carpet, are utilized in the design of extended surfaces an increase in surface area and simultaneous decrease in mass can be achieved. The thermal performance of fins inspired by the first four fractal iterations of the Sierpinski carpet pattern was experimentally examined in a natural convection environment. The fractal fins were subject to a heat transfer rate of 10 W at their base and performance was evaluated for six different angles of inclination from 15° to 90°. The thermal performance of the fractal fins was evaluated based on fin efficiency, fin effectiveness, and fin effectiveness per unit mass. It was found that the angle of inclination did not have a statistically significant impact on performance. Regardless of angle of inclination, a fin inspired by the fourth fractal iteration was, on average, 6.1% more effective and 58.8% more effective per unit mass than a traditional straight rectangular fin of uniform cross-section.
Recommended Citation
Fussell, Luke A., "Natural Convection Heat Transfer of Inclined Sierpinski Carpet Fractal Fins" (2017). Electronic Theses and Dissertations. 1700.
https://digitalcommons.georgiasouthern.edu/etd/1700
Research Data and Supplementary Material
No