Term of Award
Fall 2017
Degree Name
Master of Science in Applied Engineering (M.S.A.E.)
Document Type and Release Option
Thesis (open access)
Copyright Statement / License for Reuse
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Department of Mechanical Engineering
Committee Chair
David Calamas
Committee Member 1
Marcel ILie
Committee Member 2
Mosfequr Rahman
Abstract
Double-pipe heat exchangers are the simplest type of heat exchanger and are widely utilized in industrial applications. The effectiveness of double-pipe heat exchangers can be increased by using various heat transfer enhancement techniques. Passive heat transfer enhancement methods are desirable as they do not require moving components and are easy to manufacture and maintain. The focus of this study is to implement a passive heat transfer enhancement method and to investigate how thermal performance is impacted. Specifically, the inner pipe in a heat exchanger will be modified to have a cross-section in accordance with the Koch snowflake fractal pattern. The Koch snowflake fractal pattern, when utilized in the heat exchanger, results in an increase in surface area. A validated and verified model of a double-pipe heat exchanger will be used to evaluate the effectiveness of double-pipe heat exchangers inspired by the first three iterations of the Koch snowflake fractal pattern. The performance of the fractal heat exchangers will be compared to a traditional double-pipe heat exchanger operating under identical conditions. It was found that a double-pipe heat exchanger with a cross-section in accordance with the second iteration of the Koch snowflake fractal pattern resulted in an increase in the overall heat transfer coefficient and heat transfer rate of 18% and 75% respectively when compared with a traditional double-pipe heat exchanger with a circular cross-section.
Recommended Citation
Gomez, Anton, "Thermal Performance of a Double-Pipe Heat Exchanger with a Koch Snowflake Fractal Design" (2017). Electronic Theses and Dissertations. 1697.
https://digitalcommons.georgiasouthern.edu/etd/1697
Research Data and Supplementary Material
No