Term of Award
Summer 2017
Degree Name
Master of Science in Applied Engineering (M.S.A.E.)
Document Type and Release Option
Thesis (open access)
Copyright Statement / License for Reuse
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Department of Mechanical Engineering
Committee Chair
Biswanath Samanta
Committee Member 1
David Calamas
Committee Member 2
Minchul Shin
Abstract
In order to meet the US Department of Energy projected target of 35% of US energy coming from wind by 2050, there is a strong need to study the management and development of wind turbine technology and its impact on human health, wildlife and environment. The prediction of wind turbine noise and its propagation is very critical to study the impacts of wind turbine noise for long term adoption and acceptance by neighboring communities. The prediction of wind speed is critical in the assessment of feasibility of a potential wind turbine site. This work presents a study on prediction of wind turbine noise and wind speed using a noise propagation model and artificial neural network (ANN) methods respectively. The noise propagation model utilized Openwind, a software package used for wind project design and optimization, to predict a noise map based on inputs acquired from a potential wind energy demonstration site in Georgia. The resultant noise of the wind turbines and the ambient surroundings were predicted in the neighborhood for different scenarios. The nonlinear autoregressive (NAR) neural network and nonlinear autoregressive neural network with exogenous inputs (NARX) were used to predict wind speed utilizing one year of hourly weather data from four locations around the US to train, validate, and test these networks. This study optimized both neural network configurations and it was demonstrated that both models were suitable for wind speed prediction. Both models were implemented for single-step and multi-step ahead prediction of wind speed for all four locations and results were compared. NARX model gave better prediction performance than NAR model and the difference was statistically significant.
Recommended Citation
Blanchard, Tyler H., "Wind Turbine Noise and Wind Speed Prediction" (2017). Electronic Theses and Dissertations. 1640.
https://digitalcommons.georgiasouthern.edu/etd/1640
Research Data and Supplementary Material
No
Included in
Computer and Systems Architecture Commons, Other Engineering Commons, Power and Energy Commons