Term of Award
Summer 2016
Degree Name
Master of Science in Mathematics (M.S.)
Document Type and Release Option
Thesis (open access)
Copyright Statement / License for Reuse
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Department of Mathematical Sciences
Committee Chair
Jiehua Zhu
Committee Member 1
Xiezhang Li
Committee Member 2
Yan Wu
Abstract
Discrete tomography (DT) is an image reconstruction procedure that deals with computational synthesis of a cross-sectional image of an object from either transmission or reflection data collected by penetrating an object with X-rays from a small number of different directions, and whose range of the underlying function is discrete. Image reconstruction using algebraic approach is time consuming and the computation cost depends on the size of the system matrix. More scanning directions provide an increase in the reconstructed image quality, however they increase the size of the system matrix dramatically. Deletion of linearly dependent rows of this matrix is necessary to reduce computational cost, and is sometimes a requirement for certain reconstruction software. A geometric-based algorithm is derived in this study that will remove linearly dependent rows of the system matrix generated along an arbitrary number of scanning directions. Numerical experiments indicate that the proposed algorithm reduces the system matrix to a full row-rank.
Recommended Citation
Lutsenko, Igor, "Geometric-Based Algorithm for a Full Row-Rank System Matrix Along Multiple Directions in DT" (2016). Electronic Theses and Dissertations. 1453.
https://digitalcommons.georgiasouthern.edu/etd/1453
Research Data and Supplementary Material
No