Term of Award
Spring 2015
Degree Name
Master of Science in Applied Physical Science (M.S.)
Document Type and Release Option
Thesis (open access)
Copyright Statement / License for Reuse
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Department of Electrical Engineering
Committee Chair
Ji Wu
Committee Member 1
Rafael Quirino
Committee Member 2
John Stone
Abstract
A unique electrospinning method was implemented to fabricate composite nanofibers for lithium ion battery applications. The composite nanofibers were made of amorphous carbon, rutile phase TiO2, and cubic phase Si nanoparticles. Sulfur was utilized as a template to form void structures within the TiO2 nanofiber matrix. This provides the desired space for the Si expansion during the lithiation process. Phase, structure, composition, and morphology of the nanofibers were characterized using Raman spectroscopy, SEM, EDS, TGA, and powder XRD. Carbonized TiO2 nanofibers showed a low but stable specific capacity. Si Nanoparticles demonstrated an initially high but fast degrading capacity. In contrast, silicon in SiNP/C/TiO2 nanofibers with sulfur as a template exhibits an impressive high specific capacity of ~3459 mAh g-1initially, 54% of which can be maintained after 180 cycles.
Recommended Citation
McCormac, K., et al., Preparation of porous Si and TiO2 nanofibres using a sulphur-templating method for lithium storage. 2015: p. 1-5. DOI: 10.1002/pssa.201431834.