Term of Award

Summer 2014

Degree Name

Master of Science in Applied Engineering (M.S.A.E.)

Document Type and Release Option

Thesis (open access)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Department

Department of Mechanical Engineering

Committee Chair

Biswanath Samanta

Committee Member 1

Anoop Desai

Committee Member 2

Jordan Shropshire

Abstract

In recent years, the advancement of neurobiologically plausible models and computer networking has resulted in new ways of implementing control systems on robotic platforms. The work presents a control approach based on vertebrate neuromodulation and its implementation on autonomous robots in the open-source, open-access environment of robot operating system (ROS). A spiking neural network (SNN) is used to model the neuromodulatory function for generating context based behavioral responses of the robots to sensory input signals. The neural network incorporates three types of neurons- cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for rewards- and curiosity-seeking, and serotonergic (5-HT) neurons for risk aversion behaviors. This model depicts neuron activity that is biologically realistic but computationally efficient to allow for large-scale simulation of thousands of neurons. The model is implemented using graphics processing units (GPUs) for parallel computing in real-time using the ROS environment. The model is implemented to study the risk-taking, risk-aversive, and distracted behaviors of the neuromodulated robots in single- and multi-robot configurations. The entire process is implemented in a cloud computing environment using ROS where the robots communicate wirelessly with the computing nodes through the on-board laptops. However, unlike the traditional neural networks, the neuromodulatory models do not need any pre-training. Instead, the robots learn from the sensory inputs and follow the behavioral facets of living organisms. The details of algorithm development, the experimental setup and implementation results under different conditions, in both single- and multi-robot configurations, are presented along with a discussion on the scope of further work.

OCLC Number

923775124

Research Data and Supplementary Material

No

Files over 10MB may be slow to open. For best results, right-click and select "Save as..."

Share

COinS