Smart Distributed Generation Systems Using Artificial Neural Network-Based Event Classification
Document Type
Article
Publication Date
3-13-2018
Publication Title
IEEE Power and Energy Technology Systems Journal
DOI
10.1109/JPETS.2018.2805894
ISSN
2332-7707
Abstract
Distributed Generation (DG) sources have become an integral part of today’s decentralized power systems. However, current DG systems are mostly passive and do not provide intelligent information to help detect power quality issues. In this paper, a novel and intelligent event classification scheme is proposed to provide DG systems with real-time decision making capabilities. The proposed technique has the ability to provide information to help maintain the quality and reliability of DG systems under various disturbances or operating conditions. This event classification technique was developed using artificial neural networks (ANN) with a pre-defined set of local input parameters. The algorithm is implemented using four parallel ANNs that were designed to operate under a majority vote fusion algorithm representing the final classification output. A total of 310 event cases were generated to test the performance of the proposed technique. Simulation results showed that events were accurately classified within 10 cycles of their occurrences while achieving a 96.21% average classification accuracy.
Recommended Citation
Haddad, Rami J., Bikiran Guha, Youakim Kalaani, Adel El-Shahat.
2018.
"Smart Distributed Generation Systems Using Artificial Neural Network-Based Event Classification."
IEEE Power and Energy Technology Systems Journal: IEEE Xplore.
doi: 10.1109/JPETS.2018.2805894
https://digitalcommons.georgiasouthern.edu/electrical-eng-facpubs/122