Document Type

Article

Publication Date

6-5-2019

Publication Title

Journal of Molecular Structure

DOI

https://doi.org/10.1016/j.molstruc.2019.02.078

Abstract

Reaction of tetrakis(acetonitrile)copper(I) perchlorate ([Cu(NCCH3)4][ClO4]), tris-1-ethyl-4-methylimidazolylphosphine (T1Et4MeIP) (1) and 3-hydroxyflavone (flavH) under ambient conditions produces an in-situ generated flavonol bound copper(II) complex, which converts to a stable green complex that formulates to [Cu(T1Et4MeIP)(flav)][ClO4] (2). The crystal structure of 2 was determined by X-ray diffraction and crystallizes in a triclinic system (P1¯" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; overflow-wrap: normal; text-wrap: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">1¯) with unit cell dimensions of a = 14.537(15) Å, b = 15.794(14) Å, c = 17.044(17) Å, α = 65.58(3)˚, β = 86.80(5)˚, γ = 73.34(4)˚, V = 3376(6) Å3 and Z = 2. While the five-coordinate copper(II) complex is stable under ambient conditions in the solid state, it undergoes oxidative scission of the flavonol pyrone ring under photolytic (300 nm) and/or thermal (120 °C) conditions in the presence of molecular oxygen. The degradative process produces the corresponding methylated products: methylbenzoate, methyl salicylate and N,N-dimethylbenzamide. In addition, the previously undisclosed single crystal X-ray structure of tris-1-ethyl-4-methylimidazolylphosphine (1), T1Et4MeIP, is also reported.

Included in

Chemistry Commons

Share

COinS