Document Type
Article
Publication Date
7-31-2019
Publication Title
MDPI Sensors Journal - Special Issue: Smart Cities
DOI
10.3390/s19153364
ISSN
1424-8220
Abstract
Autonomous Wireless Sensors (AWSs) are at the core of every Wireless Sensor Network (WSN). Current AWS technology allows the development of many IoT-based applications, ranging from military to bioengineering and from industry to education. The energy optimization of AWSs depends mainly on: Structural, functional, and application specifications. The holistic design methodology addresses all the factors mentioned above. In this sense, we propose an original solution based on a novel architecture that duplicates the transceivers and also the power source using a hybrid storage system. By identifying the consumption needs of the transceivers, an appropriate methodology for sizing and controlling the power flow for the power source is proposed. The paper emphasizes the fusion between information, communication, and energy consumption of the AWS in terms of spectrum information through a set of transceiver testing scenarios, identifying the main factors that influence the sensor node design and their inter-dependencies. Optimization of the system considers all these factors obtaining an energy efficient AWS, paving the way towards autonomous sensors by adding an energy harvesting element to them.
Recommended Citation
Borza, Paul N., Mihai Machedon-Pisu, Felix G. Hamza-Lup.
2019.
"Design of Wireless Sensors for IoT with Energy Storage and Communication Channel Heterogeneity."
MDPI Sensors Journal - Special Issue: Smart Cities, 19 (15): 3364: MDPI.
doi: 10.3390/s19153364 source: https://www.mdpi.com/1424-8220/19/15/3364
https://digitalcommons.georgiasouthern.edu/compsci-facpubs/295
Comments
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited