EmoKey: An Emotion-Aware Smartphone Keyboard for Mental Health Monitoring
Document Type
Conference Proceeding
Publication Date
1-2019
Publication Title
Proceedings of the International Conference on Communication Systems and Networks
DOI
10.1109/COMSNETS.2019.8711078
ISBN
978-1-5386-7902-9
ISSN
2155-2509
Abstract
The rate of mental health disorders is rising across the globe. While it significantly affects the quality of life, an early detection can prevent the fatal consequences. Existing literature suggests that mobile based sensing technology can be used to determine different mental health conditions like stress, bipolar disorder. In today's smartphone based communication, a significant portion is based on instant messaging apps like WhatsApp; thus providing the opportunity to unobtrusively monitor the text input interaction pattern to track mental state. We, in this paper, leverage on the text entry pattern to track multiple emotion states. We design, develop and implement an Android based smartphone keyboard EmoKey, which monitors user's typing pattern and determines four emotion states (happy, sad, stressed, relaxed) by developing an on-device, personalized machine learning model. We evaluate EmoKey with 22 participants in a 3-week in-the-wild study, which reveals that it can detect the emotions with an average accuracy (AUCROC) of 78%.
Recommended Citation
Ghosh, Surjya, Sumit Sahu, Niloy Ganguly, Bivas Mitra, Pradipta De.
2019.
"EmoKey: An Emotion-Aware Smartphone Keyboard for Mental Health Monitoring."
Proceedings of the International Conference on Communication Systems and Networks: 496-499 Bengaluru, India: IEEE.
doi: 10.1109/COMSNETS.2019.8711078 isbn: 978-1-5386-7902-9
https://digitalcommons.georgiasouthern.edu/compsci-facpubs/207