A Methodology of Real-Time Data Fusion for Localized Big Data Analytics
Document Type
Article
Publication Date
4-2-2018
Publication Title
IEEE Access
DOI
10.1109/ACCESS.2018.2820176
ISSN
2169-3536
Abstract
The traditional big-data analytical approaches use data clustering as small buckets while providing distributed computation among different child nodes. These approaches bring the issues especially concerning network capacity, specialized tools and applications not capable of being trained in a short period. Furthermore, raw data generated through IoT forming big data comes with the capability of producing highly unstructured and heterogeneous form of data. Such form of data grows into challenging task for the real-time analytics. It is highly valuable to have computational values available locally instead of through distributed resources to reduce real-time analytical challenges. This paper proposes a fusion of three different data models like relational, semantical, and big data based data and metadata involving their issues and enhanced capabilities. A case study is used to represent data fusion in action from RDB to Resource Description Framework. Whereas, issues and their feasible solutions are also being discussed in this paper.
Recommended Citation
Jabbar, Sohail, Kaleem R. Malik, Mudassar Ahmad, Omar Aldabbas, Muhammad Asif, Shehzad Khalid, Kijun Han, Syed Hassan Ahmed.
2018.
"A Methodology of Real-Time Data Fusion for Localized Big Data Analytics."
IEEE Access: 24510-24520.
doi: 10.1109/ACCESS.2018.2820176
https://digitalcommons.georgiasouthern.edu/compsci-facpubs/173