Discovery of Quinoline-Derived Trifluoromethyl Alcohols, Determination of Their in vivo Toxicity and Anticancer Activity in a Zebrafish Embryo Model
Document Type
Article
Publication Date
11-2015
Publication Title
ChemMedchem
DOI
10.1002/cmdc.201500341
ISSN
1860-7187
Abstract
In this study the rational design, synthesis, and anticancer activity of quinoline-derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp3-C−H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4-trifluoro-3-hydroxy-3-(quinolin-2-ylmethyl)butanoate (1), 2-benzyl-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (2), and trifluoro-3-(isoquinolin-1-yl)-2-(thiophen-2-yl)propan-2-ol (3). Compounds 2 and 3 were found to be more toxic than compound 1; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2, with an LC50 value of 14.14 μm, has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents.
Recommended Citation
Sittaramane, Vinoth, Jihan Padgett, Philip Salter, Ashley Williams, Shauntell N. Luke, Rebecca McCall, Jonathan Arambula, Vincent B. Graves, Mark Blocker, David Van Leuven, Keturah Bowe, Julia Heimberger, Hannah C. Cade, Supriya Immaneni, Abid Shaikh.
2015.
"Discovery of Quinoline-Derived Trifluoromethyl Alcohols, Determination of Their in vivo Toxicity and Anticancer Activity in a Zebrafish Embryo Model."
ChemMedchem, 10 (11): 1802-1807: Wiley.
doi: 10.1002/cmdc.201500341 source: https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.201500341
https://digitalcommons.georgiasouthern.edu/chem-facpubs/71