On Stratified Bivariate Ranked Set Sampling for Regression Estimators
Document Type
Article
Publication Date
2015
Publication Title
Journal of Applied Statistics
DOI
10.1080/02664763.2015.1043868
ISSN
1360-0532
Abstract
We investigate the relative performance of stratified bivariate ranked set sampling (SBVRSS), with respect to stratified simple random sampling (SSRS) for estimating the population mean with regression methods. The mean and variance of the proposed estimators are derived with the mean being shown to be unbiased. We perform a simulation study to compare the relative efficiency of SBVRSS to SSRS under various data-generating scenarios. We also compare the two sampling schemes on a real data set from trauma victims in a hospital setting. The results of our simulation study and the real data illustration indicate that using SBVRSS for regression estimation provides more efficiency than SSRS in most cases.
Recommended Citation
Linder, Daniel F., Hani Samawi, Lili Yu, Arpita Chatterjee, Yisong Huang, Robert L. Vogel.
2015.
"On Stratified Bivariate Ranked Set Sampling for Regression Estimators."
Journal of Applied Statistics, 42 (12): 2471-2483.
doi: 10.1080/02664763.2015.1043868
https://digitalcommons.georgiasouthern.edu/biostat-facpubs/92