Reducing Sample Size Needed for Cox-Proportional hazards model Analysis Using More Efficient Sampling Method
Document Type
Article
Publication Date
12-31-2018
Publication Title
Communication of Statistics: Theory and Methods
DOI
10.1080/03610926.2018.1554141
ISSN
1532-415X
Abstract
In general, survival data are time-to-event data, such as time to death, time to appearance of a tumor, or time to recurrence of a disease. Models for survival data have frequently been based on the proportional hazards model, proposed by Cox. The Cox model has intensive application in the field of social, medical, behavioral and public health sciences. In this paper we propose a more efficient sampling method of recruiting subjects for survival analysis. We propose using a Moving Extreme Ranked Set Sampling (MERSS) scheme with ranking based on an easy-to-evaluate baseline auxiliary variable known to be associated with survival time. This paper demonstrates that this approach provides a more powerful testing procedure as well as a more efficient estimate of hazard ratio than that based on simple random sampling (SRS). Theoretical derivation and simulation studies are provided. The Iowa 65+ Rural study data are used to illustrate the methods developed in this paper.
Recommended Citation
Samawi, Hani, Lili Yu, Haresh Rochani, Robert Vogel.
2018.
"Reducing Sample Size Needed for Cox-Proportional hazards model Analysis Using More Efficient Sampling Method."
Communication of Statistics: Theory and Methods, 49 (6): 1281-1298: Taylor & Francis Online.
doi: 10.1080/03610926.2018.1554141 source: https://www.tandfonline.com/doi/full/10.1080/03610926.2018.1554141
https://digitalcommons.georgiasouthern.edu/bee-facpubs/305
Comments
Taylor and Francis Publishers Rights and Permissions