Document Type

Article

Publication Date

3-2016

Publication Title

Journal of Symplectic Geometry

DOI

10.4310/JSG.2016.v14.n1.a1

ISSN

1527-5256

Abstract

We prove that a topological contact isotopy uniquely defines a topological contact Hamiltonian. Combined with previous results from [MS11], this generalizes the classical one-to-one correspondence between smooth contact isotopies and their generating smooth contact Hamiltonians and conformal factors to the group of topological contact dynamical systems. Applications of this generalized correspondence include C0 -rigidity of smooth contact Hamiltonians, a transformation law for topological contact dynamical systems, and C0 -rigidity of the geodesic flows of Riemannian manifolds.

Comments

This version of the paper was obtained from arXIV.org. In order for the work to be deposited in arXIV.org, the authors must hold the rights or the work must be under Creative Commons Attribution license, Creative Commons Attribution-Noncommercial-ShareAlike license, or Create Commons Public Domain Declaration. The publisher's final edited version of this article is available at Journal of Symplectic Geometry.

Included in

Mathematics Commons

Share

COinS