Honors College Theses

Publication Date



Chemistry (B.S.)

Document Type and Release Option

Thesis (restricted to Georgia Southern)

Faculty Mentor

Rafael Quirino


The free radical co-polymerization of tung oil, divinylbenzene, and n-butyl methacrylate results in bio-based thermosetting polymers with tunable properties. Biocomposites have been obtained by the reinforcement of such bio-based resins with a-cellulose. Asolectin from soybeans consists of a mixture of natural, polyunsaturated phospholipids. Because of its long, unsaturated fatty acid chains, and the presence of phosphate and ammonium groups, asolectin from soybeans is a good candidate for acting as a natural compatibilizer between the hydrophobic matrix and the hydrophilic reinforcement. In the current work, we investigate the changes in properties resulting from the addition of asolectin to a tung oil-based polymer reinforced with a-cellulose. An evaluation of the cure-kinetics of the tung oil-based resin has been conducted by dielectric analysis (DEA), and the final biocomposites have been thoroughly characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), Soxhlet extraction, and scanning electron microscopy (SEM).

Available for download on Thursday, April 11, 2115