Term of Award

Spring 2024

Degree Name

Master of Science in Mathematics (M.S.)

Document Type and Release Option

Thesis (open access)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


Department of Mathematical Sciences

Committee Chair

Stephen Carden

Committee Member 1

Ionut Iacob

Committee Member 2

Zheni Utic


Reinforcement learning (RL) is a subfield of machine learning concerned with agents learning to behave optimally by interacting with an environment. One of the most important topics in RL is how the agent should explore, that is, how to choose actions in order to rate their impact on long-term reward. For example, a simple baseline strategy might be uniformly random action selection. This thesis investigates the heuristic idea that agents will learn faster if they explore by factoring the environment’s state into their decision and intentionally choose actions which are as different as possible from what they have previously observed. Experiments are run to discover whether this algorithm is computationally reasonable, and whether the agent learns significantly faster compared to baseline exploration strategies.

OCLC Number


Research Data and Supplementary Material