Term of Award

Fall 2023

Degree Name

Master of Science in Mathematics (M.S.)

Document Type and Release Option

Thesis (open access)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


Department of Mathematical Sciences

Committee Chair

Zheni Utic

Committee Member 1

Stephen Carden

Committee Member 2

Kyle Bradford


This thesis delves into cybersecurity by applying Deep Reinforcement(DRL) Learning in network intrusion detection. One advantage of DRL is the ability to adapt to changing network conditions and evolving attack methods, making it a promising solution for addressing the challenges involved in intrusion detection. The thesis will also discuss the obstacles and benefits of using Classification methods for network intrusion detection and the need for high-quality training data. To train and test our proposed method, the NSL-KDD dataset was used and then adjusted by converting it from a multi-classification to a binary classification, achieved by joining all attacks into one. This approach sets apart our research from other studies.

Research Data and Supplementary Material