Term of Award

Spring 2022

Degree Name

Master of Science in Mathematics (M.S.)

Document Type and Release Option

Thesis (open access)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


Department of Mathematical Sciences

Committee Chair

Ionut Iacob

Committee Member 1

Yan Wu

Committee Member 2

Felix Hamza-Lup


The study of elecroencephalograms (EEGs) has gained enormous interest in the last decade with the increase of computational power and availability of EEG signals collected from various human activities or produced during medical tests. The applicability of analyzing EEG signals ranges from helping impaired people communicate or move (using appropriate medical equipment) to understanding people's feelings and detecting diseases.

We proposed new methodology and models for analyzing and classifying EEG signals collected from individuals observing visual stimuli. Our models rely on powerful Long-Short Term Memory (LSTM) Neural Network models, which are currently the state of the art models for performing time series classifications.

OCLC Number


Research Data and Supplementary Material