Term of Award

Fall 2019

Degree Name

Master of Science, Applied Geography

Document Type and Release Option

Thesis (open access)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


Department of Geology and Geography

Committee Chair

Xiaolu Zhou

Committee Member 1

Wei Tu

Committee Member 2

Kai Wang


Traffic sign detection and positioning have drawn considerable attention because of the recent development of autonomous driving and intelligent transportation systems. In order to detect and pinpoint traffic signs accurately, this research proposes two methods. In the first method, geo-tagged Google Street View images and road networks were utilized to locate traffic signs. In the second method, both traffic signs categories and locations were identified and extracted from the location-based GoPro video. TensorFlow is the machine learning framework used to implement these two methods. To that end, 363 stop signs were detected and mapped accurately using the first method (Google Street View image-based approach). Then 32 traffic signs were recognized and pinpointed using the second method (GoPro video-based approach) for better location accuracy, within 10 meters. The average distance from the observation points to the 32 ground truth references was 7.78 meters. The advantages of these methods were discussed. GoPro video-based approach has higher location accuracy, while Google Street View image-based approach is more accessible in most major cities around the world. The proposed traffic sign detection workflow can thus extract and locate traffic signs in other cities. For further consideration and development of this research, IMU (Inertial Measurement Unit) and SLAM (Simultaneous Localization and Mapping) methods could be integrated to incorporate more data and improve location prediction accuracy.

OCLC Number


Research Data and Supplementary Material