Term of Award

Spring 2018

Degree Name

Master of Science in Applied Engineering (M.S.A.E.)

Document Type and Release Option

Thesis (open access)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


Department of Mechanical Engineering

Committee Chair

Valentin Soloiu

Committee Member 1

Marcel Ilie

Committee Member 2

Prakashbhai Bhoi


Increasing restrictions on the emitted exhaust emissions in diesel engines are becoming a more challenging task than in previous years. An electronic common rail fuel injection system and a port fuel injection (PFI) system were developed for an experimental engine to research dual fuel combustion. The experimental research was conducted at 1500 rpm and 4, 5, and 6 bar indicated mean effective pressure (IMEP). n-Butanol was port fuel injected at a 60% by mass fraction coupled with direct injection (DI) of three fuels, including ultra-low sulfur diesel (ULSD RCCI), a 50-50 wt-% blend of ULSD and butanol (ULSD-Bu RCCI), and a 50-50 wt-% blend of Fischer Tropsch synthetic paraffinic kerosene and butanol (S8-Bu RCCI). Split DI events of high reactivity fuels were used to maintain constant combustion phasing. The fuel blends increased pressure rise rates and ringing intensity drastically compared to conventional diesel combustion (CDC) and ULSD RCCI. Both butanol fuel bends had lower ignition quality than ULSD, increasing the mass fraction at the first DI event, increasing heat release rates up to 30%. ULSD-Bu RCCI had the shortest ignition delay and combustion duration due to the low cetane number. NOx and soot were simultaneously reduced up to 90% with RCCI compared to CDC. Unburned hydrocarbons were increased for RCCI fuel blends. S8-Bu RCCI resulted in reductions in hydrocarbon emissions compared to ULSD-Bu RCCI. Results display large emission reductions of harmful pollutants, such as NOx and soot, with RCCI combustion and the potential of alternative fuels in diesel combustion.

Research Data and Supplementary Material