Document Type

Article

Publication Date

2013

Publication Title

Dalton Transactions

DOI

10.1039/C3DT51958A

Abstract

A multiphase strategy is proposed and successfully applied to make the insulating green phosphor CaCeAl3O7:Tb3+ conductive in the form of 12CaO·7Al2O3–CaCeAl3O7:Ce3+,Tb3+. The phosphor shows bright green-light emission with a short lifetime (2.51 ms) under low-voltage electron beam excitation (3 kV). The green photo- and cathodoluminescence from 5D47FJ (J = 6, 5, 4, 3) transitions of Tb3+ are significantly enhanced in comparison with pure C12A7:Tb3+. It was confirmed that this enhancement is the consequence of the joint effects of energy transfer from Ce3+ to Tb3+ and broadening of the absorption spectrum of Ce3+ due to the existence of multiple phases. In particular, under 800 V electron beam excitation, cathodoluminescence is improved by the modified electrical conductivity of the phosphor. When compared to the commercial Zn2SiO4:Mn2+ with a long luminescence lifetime of 11.9 ms, this conductive green phosphor has greater advantage for fast displays.

Comments

RSC Publishing allows for authors to make available the PDF of the final published article via the personal website(s) of the author(s) or via the Intranet(s) of the organisation(s) where the author(s) work(s). Article obtained Dalton Transactions.

Included in

Physics Commons

Share

COinS