Publication Date

July 2022


Given a vertex coloring c of a graph, the neighborhood color set of a vertex is defined to be the set of all of its neighbors’ colors. The coloring c is called a set coloring if any two adjacent vertices have different neighborhood color sets. The set chromatic number χs(G) of a graph G is the minimum number of colors required in a set coloring of G. In this work, we investigate a total analog of set colorings; that is, we study set colorings of the total graph of graphs. Given a graph G = (V, E), its total graph T(G) is the graph whose vertex set is VE and in which two vertices are adjacent if and only if their corresponding elements in G are adjacent or incident. First, we establish sharp bounds for the set chromatic number of the total graph of a graph. Furthermore, we study the set colorings of the total graph of different families of graphs.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

ref_tag2022090205.pdf (150 kB)
Supplemental Reference List with DOIs