The strong matching preclusion is a measure for the robustness of interconnection networks in the presence of node and/or link failures. However, in the case of random link and/or node failures, it is unlikely to find all the faults incident and/or adjacent to the same vertex. This motivates Park et al. to introduce the conditional strong matching preclusion of a graph. In this paper we consider the conditional strong matching preclusion problem of the augmented cube $AQ_n$, which is a variation of the hypercube $Q_n$ that possesses favorable properties.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

ref_tag2021080105.pdf (150 kB)
Supplemental Reference List with DOIs