Document Type

Research Paper

Publication Date

Summer 6-23-2023


Through the introduction of an informal axiomatic framework, this paper aims to contribute to the development of a general theory of logistics, which is currently still a blindspot in logistics research. It aims to combine the precision of robotic motion planning concepts with established logistics terminology, forging a link that balances the robustness of a mathematically rigorous theory with the rich semantic understanding inherent in logistics models. Centered around the notion of designing a logistic space, a possible way of structuring this space by grid-based and continuous spatial structures is discussed. The axiomatic framework is extended to include a new definition of logistics, queues, and other related concepts, providing a comprehensive view of logistics systems. Continuous spatial structures are semantically assigned to an idealized transport system, while the grid-based structure is recognized as an idealized storage system.

Publication Title

Progress in Material Handling Research

Files over 10MB may be slow to open. For best results, right-click and select "Save as..."